Skip to content

More Distributions for Modeling Claim

In this section, we will discuss two more distributions that are commonly used to model the insurance claims, which are the Pareto distribution and the Weibull distribution.

Pareto distribution

Characteristics of the Pareto distribution

If a random variable XX follows a Pareto distribution, we denote it as

XPareto(α,λ),X \sim \text{Pareto}(\alpha, \lambda),

where α\alpha and λ\lambda are the shape and scale parameters, respectively.

  • PDF:

    f(x)=αλα(λ+x)α+1,for x>0f(x)=\frac{\alpha\lambda^{\alpha}}{(\lambda+x)^{\alpha+1}},\mathrm{for}\ x>0

    The PDF can be derived by the following mixture distribution:

    Suppose Xθexp(θ)X|\theta \sim \text{exp}(\theta) and θgamma(α,λ)\theta \sim \text{gamma}(\alpha, \lambda), and the density function of λ\lambda is given by:

    f(θα,λ)=λαΓ(α)θα1eλθ,θ>0f(\theta|\alpha, \lambda) = \frac{\lambda^\alpha}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\lambda \theta}, \quad \theta > 0

    Then, the density function of XX is given by:

    fX(xα,λ)=0f(xθ)f(θα,λ)dθ=0(θeθx)[λαΓ(α)θα1eλθ]dθ=0λαΓ(α)θαe(λ+x)θdθ=λαΓ(α)0θαe(λ+x)θdθ=λαΓ(α+1)Γ(α)01Γ(α+1)θαe(λ+x)θdθ=λαΓ(α+1)Γ(α)(λ+x)α+1(0(λ+x)α+1Γ(α+1)θαe(λ+x)θdθ)1=λαΓ(α+1)Γ(α)(λ+x)α+1=αλα(λ+x)α+1\begin{align*} f_X(x|\alpha, \lambda) &= \int_0^\infty f(x|\theta) f(\theta|\alpha, \lambda) d\theta \\ &= \int_0^\infty (\theta e^{-\theta x}) \left[ \frac{\lambda^\alpha}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\lambda \theta} \right] d\theta \\ &= \int_0^\infty \frac{\lambda^\alpha}{\Gamma(\alpha)} \theta^\alpha e^{-(\lambda + x)\theta} d\theta \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty \theta^\alpha e^{-(\lambda + x)\theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha)} \int_0^\infty \frac{1}{\Gamma(\alpha+1)} \theta^\alpha e^{-(\lambda + x)\theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha)(\lambda + x)^{\alpha+1}} \underbrace{\left( \int_0^\infty \frac{(\lambda + x)^{\alpha+1}}{\Gamma(\alpha+1)} \theta^\alpha e^{-(\lambda + x)\theta} d\theta \right)}_{1} \\ &= \frac{\lambda^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha)(\lambda + x)^{\alpha+1}} = \frac{\alpha \lambda^\alpha}{(\lambda + x)^{\alpha+1}} \end{align*}

  • CDF:

    F(x)=1(λλ+x)α,for x>0F(x)=1-\left(\frac{\lambda}{\lambda+x}\right)^{\alpha},\mathrm{for}\ x>0

  • Survival function:

    Fˉ(x)=(λλ+x)α,for x>0\bar{F}(x)=\left(\frac{\lambda}{\lambda+x}\right)^{\alpha},\mathrm{for}\ x>0

    The survival function can be derived by the following:

    Fˉ(xα,λ)=0F(xθ)f(θα,λ)dθ=0eθx[λαΓ(α)θα1eλθ]dθ=λαΓ(α)0θα1e(λ+x)θdθ=λαΓ(α)Γ(α)01Γ(α)θα1e(λ+x)θdθ=λαΓ(α)Γ(α)(λ+x)α(0(λ+x)αΓ(α)θα1e(λ+x)θdθ)1=λαΓ(α)Γ(α)(λ+x)α=λα(λ+x)α=(λλ+x)α\begin{align*} \bar{F}(x|\alpha, \lambda) &= \int_0^\infty F(x|\theta) f(\theta|\alpha, \lambda) d\theta \\ &= \int_0^\infty e^{-\theta x} \left[ \frac{\lambda^\alpha}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\lambda \theta} \right] d\theta \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty \theta^{\alpha - 1} e^{-(\lambda + x)\theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(\alpha)}{\Gamma(\alpha)} \int_0^\infty \frac{1}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-(\lambda + x)\theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(\alpha)}{\Gamma(\alpha)(\lambda + x)^\alpha} \underbrace{\left( \int_0^\infty \frac{(\lambda + x)^\alpha}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-(\lambda + x)\theta} d\theta \right)}_{1} \\ &= \frac{\lambda^\alpha \Gamma(\alpha)}{\Gamma(\alpha)(\lambda + x)^\alpha} = \frac{\lambda^\alpha}{(\lambda + x)^\alpha} = \left( \frac{\lambda}{\lambda + x} \right)^\alpha \end{align*}

Propositions of the Pareto distribution

  • Mean:

    E(X)=λα1,α>1E(X) = \frac{\lambda}{\alpha - 1}, \quad \alpha > 1

    Following the previous setting, we can have:

    E(X)=0E(Xθ)f(θα,λ)dθ=01θf(θα,λ)dθ=01θλαΓ(α)θα1eλθdθ=λαΓ(α)0θα2eλθdθ=λαΓ(α1)Γ(α)01Γ(α1)θα2eλθdθ=λαΓ(α1)Γ(α)λα1(0λα1Γ(α1)θα2eλθdθ)1=λαΓ(α1)Γ(α)λα1=λα1\begin{align*} E(X) &= \int_0^\infty E(X|\theta) f(\theta|\alpha, \lambda) d\theta \\ &= \int_0^\infty \frac{1}{\theta} f(\theta|\alpha, \lambda) d\theta \\ &= \int_0^\infty \frac{1}{\theta} \frac{\lambda^\alpha}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\lambda \theta} d\theta \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty \theta^{\alpha - 2} e^{-\lambda \theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(\alpha - 1)}{\Gamma(\alpha)} \int_0^\infty \frac{1}{\Gamma(\alpha - 1)} \theta^{\alpha - 2} e^{-\lambda \theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(\alpha - 1)}{\Gamma(\alpha) \lambda^{\alpha - 1}} \underbrace{\left( \int_0^\infty \frac{\lambda^{\alpha - 1}}{\Gamma(\alpha - 1)} \theta^{\alpha - 2} e^{-\lambda \theta} d\theta \right)}_{1} \\ &= \frac{\lambda^\alpha \Gamma(\alpha - 1)}{\Gamma(\alpha) \lambda^{\alpha - 1}} = \frac{\lambda}{\alpha - 1} \end{align*}

  • K-th origin moment:

    E(Xk)=λkΓ(α+k)Γ(α)(α1)k,α>1E(X^k) = \frac{\lambda^k \Gamma(\alpha + k)}{\Gamma(\alpha) (\alpha - 1)^k}, \quad \alpha > 1

    Derive the kk-th origin moment

    E(Xk)=0E(Xkθ)f(θα,λ)dθ=0Γ(k+1)θkf(θα,λ)dθ=0Γ(k+1)θkλαΓ(α)θα1eλθdθ=λαΓ(k+1)Γ(α)0θαk1eλθdθ=λαΓ(k+1)Γ(αk)Γ(α)01Γ(αk)θαk1eλθdθ=λαΓ(k+1)Γ(αk)Γ(α)λαk(0λαkΓ(αk)θαk1eλθdθ)1=λαΓ(k+1)Γ(αk)Γ(α)λαk=λkΓ(k+1)Γ(αk)Γ(α)=λkk!(αk1)!(α1)!=λkk!(a1)(ak),1<k<α\begin{align*} E(X^k) &= \int_0^\infty E(X^k|\theta) f(\theta|\alpha, \lambda) d\theta \\ &= \int_0^\infty \frac{\Gamma(k+1)}{\theta^k} f(\theta|\alpha, \lambda) d\theta \\ &= \int_0^\infty \frac{\Gamma(k+1)}{\theta^k} \frac{\lambda^\alpha}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\lambda \theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(k+1)}{\Gamma(\alpha)} \int_0^\infty \theta^{\alpha - k - 1} e^{-\lambda \theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(k+1) \Gamma(\alpha - k)}{\Gamma(\alpha)} \int_0^\infty \frac{1}{\Gamma(\alpha - k)} \theta^{\alpha - k - 1} e^{-\lambda \theta} d\theta \\ &= \frac{\lambda^\alpha \Gamma(k+1) \Gamma(\alpha - k)}{\Gamma(\alpha) \lambda^{\alpha - k}} \underbrace{\left( \int_0^\infty \frac{\lambda^{\alpha - k}}{\Gamma(\alpha - k)} \theta^{\alpha - k - 1} e^{-\lambda \theta} d\theta \right)}_{1} \\ &= \frac{\lambda^\alpha \Gamma(k+1) \Gamma(\alpha - k)}{\Gamma(\alpha) \lambda^{\alpha - k}} = \frac{\lambda^k \Gamma(k+1) \Gamma(\alpha - k)}{\Gamma(\alpha)} = \frac{\lambda^k k! (\alpha - k - 1)!}{(\alpha - 1)!} \\ &= \frac{\lambda^k k!}{(a-1) \cdots (a-k)}, \quad -1 < k < \alpha \end{align*}

  • Variance:

    Var(X)=λ2(α1)2(α2),α>2\text{Var}(X) = \frac{\lambda^2}{(\alpha - 1)^2 (\alpha - 2)}, \quad \alpha > 2

    Derive the variance of Pareto distribution by standard formula

    Var(X)=E(X2)E2(X)=λ2Γ(α+2)Γ(α)(α1)2(λα1)2=λ2Γ(α+2)Γ(α)(α1)2λ2(α1)2=λ2Γ(α+2)Γ(α)(α1)2λ2Γ(α+1)Γ(α)(α1)2=λ2Γ(α+2)λ2Γ(α+1)Γ(α)(α1)2=λ2Γ(α+21)(α+11)λ2Γ(α+1)Γ(α)(α1)2=λ2Γ(α+2)Γ(α)(α1)2λ2Γ(α+1)Γ(α)(α1)2=λ2Γ(α+2)λ2Γ(α+1)Γ(α)(α1)2=λ2Γ(α+21)(α+11)λ2Γ(α+1)Γ(α)(α1)2=λ2Γ(α+1)(α+11)λ2Γ(α+1)Γ(α)(α1)2=λ2Γ(α+1)Γ(α)(α1)2=λ2(α1)2(α2)\begin{align*} \text{Var}(X) &= E(X^2) - E^2(X) = \frac{\lambda^2 \Gamma(\alpha + 2)}{\Gamma(\alpha) (\alpha - 1)^2} - \left( \frac{\lambda}{\alpha - 1} \right)^2 \\ &= \frac{\lambda^2 \Gamma(\alpha + 2)}{\Gamma(\alpha) (\alpha - 1)^2} - \frac{\lambda^2}{(\alpha - 1)^2} \\ &= \frac{\lambda^2 \Gamma(\alpha + 2)}{\Gamma(\alpha) (\alpha - 1)^2} - \frac{\lambda^2 \Gamma(\alpha + 1)}{\Gamma(\alpha) (\alpha - 1)^2} \\ &= \frac{\lambda^2 \Gamma(\alpha + 2) - \lambda^2 \Gamma(\alpha + 1)}{\Gamma(\alpha) (\alpha - 1)^2} \\ &= \frac{\lambda^2 \Gamma(\alpha + 2 - 1) (\alpha + 1 - 1) - \lambda^2 \Gamma(\alpha + 1)}{\Gamma(\alpha) (\alpha - 1)^2} \\ &= \frac{\lambda^2 \Gamma(\alpha + 2)}{\Gamma(\alpha) (\alpha - 1)^2} - \frac{\lambda^2 \Gamma(\alpha + 1)}{\Gamma(\alpha) (\alpha - 1)^2} \\ &= \frac{\lambda^2 \Gamma(\alpha + 2) - \lambda^2 \Gamma(\alpha + 1)}{\Gamma(\alpha) (\alpha - 1)^2} \\ &= \frac{\lambda^2 \Gamma(\alpha + 2 - 1) (\alpha + 1 - 1) - \lambda^2 \Gamma(\alpha + 1)}{\Gamma(\alpha) (\alpha - 1)^2} \\ &= \frac{\lambda^2 \Gamma(\alpha + 1) (\alpha + 1 - 1) - \lambda^2 \Gamma(\alpha + 1)}{\Gamma(\alpha) (\alpha - 1)^2} \\ &= \frac{\lambda^2 \Gamma(\alpha + 1)}{\Gamma(\alpha) (\alpha - 1)^2} = \frac{\lambda^2}{(\alpha - 1)^2 (\alpha - 2)} \end{align*}

Estimation of parameters

Method of moments (MM)

In the Pareto distribution, we have two parameters to estimate, so we need to use the method of moments to estimate the parameters α\alpha and λ\lambda. The first moment of the Pareto distribution is λα1\frac{\lambda}{\alpha - 1}, and the second moment is λ2(α1)2(α2)\frac{\lambda^2}{(\alpha - 1)^2 (\alpha - 2)}. Both of them should be equal to the sample moments.

We can solve the following criteria:

E(X)=λα1=1ni=1nXi=XˉE(X) = \frac{\lambda}{\alpha - 1} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}

Var(X)=λ2(α1)2(α2)=1ni=1n(XiXˉ)2=S2Var(X) = \frac{\lambda^2}{(\alpha - 1)^2 (\alpha - 2)} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = S^2

Solve the first moment,

λ^=Xˉ(α^1)\hat{\lambda} = \bar{X}(\hat{\alpha} - 1)

Then, replace λ\lambda with Xˉ(α^1)\bar{X}(\hat{\alpha} - 1) in the second moment, we can get the estimator of α\alpha:

Xˉ(α^1)(α^1)2(α^2)=S2Xˉ(α^1)=S2(α^1)2(α^2)Xˉ=S2(α^1)(α^2)Xˉ=S2(α^23α^+2)α^23α^+2=XˉS2α^23α^+2XˉS2=0\begin{align*} \frac{\bar{X}(\hat{\alpha} - 1)}{(\hat{\alpha} - 1)^2 (\hat{\alpha} - 2)} & = S^2 \\ \bar{X}(\hat{\alpha} - 1) & = S^2 (\hat{\alpha} - 1)^2 (\hat{\alpha} - 2) \\ \bar{X} & = S^2 (\hat{\alpha} - 1) (\hat{\alpha} - 2) \\ \bar{X} & = S^2 (\hat{\alpha}^2 - 3\hat{\alpha} + 2) \\ \hat{\alpha}^2 - 3\hat{\alpha} + 2 & = \frac{\bar{X}}{S^2} \\ \hat{\alpha}^2 - 3\hat{\alpha} + 2 - \frac{\bar{X}}{S^2} & = 0 \\ \end{align*}

According to the standard solution, we can solve the equation:

α^=3±5+4XˉS22\hat{\alpha} = \frac{3 \pm \sqrt{5 + 4\frac{\bar{X}}{S^2}}}{2}

Then, we can solve the estimator of λ\lambda:

λ^=Xˉ(α^1)=Xˉ(3±5+4XˉS221)=Xˉ(1±5+4XˉS22)\begin{align*} \hat{\lambda} & = \bar{X}(\hat{\alpha} - 1) \\ & = \bar{X}(\frac{3 \pm \sqrt{5 + 4\frac{\bar{X}}{S^2}}}{2} - 1) \\ & = \bar{X}(\frac{1 \pm \sqrt{5 + 4\frac{\bar{X}}{S^2}}}{2}) \end{align*}

The estimator of α\alpha and λ\lambda are:

α^=3±5+4XˉS22,λ^=Xˉ(1±5+4XˉS22)\hat{\alpha} = \frac{3 \pm \sqrt{5 + 4\frac{\bar{X}}{S^2}}}{2}, \quad \hat{\lambda} = \bar{X}(\frac{1 \pm \sqrt{5 + 4\frac{\bar{X}}{S^2}}}{2})

Maximum likelihood estimation (MLE)

The likelihood function of the Pareto distribution is given by:

L(α,λ)=i=1nαλα(λ+xi)α+1L(\alpha, \lambda) = \prod_{i=1}^n \frac{\alpha\lambda^{\alpha}}{(\lambda+x_i)^{\alpha+1}}

Then the log-likelihood function is:

l=i=1n(log(α)+αlog(λ)(α+1)log(λ+xi))=nlog(α)+nαlog(λ)(α+1)i=1nlog(λ+xi)\begin{array}{rl} l & = \sum_{i=1}^n \left( \log(\alpha) + \alpha \log(\lambda) - (\alpha + 1) \log(\lambda + x_i) \right) \\ \\ & = n \log(\alpha) + n \alpha \log(\lambda) - (\alpha + 1) \sum_{i=1}^n \log(\lambda + x_i) \end{array}

Taking the derivative of the log-likelihood function with respect to α\alpha and λ\lambda,

we have the following equations:

dldα=nα+nlog(λ)i=1nlog(λ+xi)=0\frac{dl}{d\alpha} = \frac{n}{\alpha} + n \log(\lambda) - \sum_{i=1}^n \log(\lambda + x_i) = 0

Solve the equation, we have the MLE of α\alpha:

nα=i=1nlog(λ+xi)nlog(λ)α^=ni=1nlog(λ+xi)nlog(λ)=ni=1nlog(1+xiλ)\begin{align*} \frac{n}{\alpha} & = \sum_{i=1}^n \log(\lambda + x_i) - n \log(\lambda) \\ \hat{\alpha} & = \frac{n}{\sum_{i=1}^n \log(\lambda + x_i) - n \log(\lambda)} \\ & = \frac{n}{\sum_{i=1}^n \log(1+ \frac{x_i}{\lambda})} \\ \end{align*}

Then, taking the derivative of the log-likelihood function with respect to λ\lambda,

dldλ=nαλ(α+1)i=1n1λ+xi=0\frac{dl}{d\lambda} = \frac{n\alpha}{\lambda} -(\alpha + 1)\sum_{i=1}^n \frac{1}{\lambda + x_i} = 0

Solve the equation, we have the MLE of λ\lambda:

nαλ=(α+1)i=1n1λ+xi(nλi=1n1λ+xi)α=i=1n1λ+xi(i=1n(1λ1λ+xi))α=i=1n1λ+xi(i=1nxiλ(λ+xi))α=i=1n1λ+xiα^=i=1n1λ+xi(i=1nxiλ(λ+xi))\begin{align*} \frac{n\alpha}{\lambda} & = (\alpha + 1)\sum_{i=1}^n \frac{1}{\lambda + x_i} \\ (\frac{n}{\lambda} - \sum_{i=1}^n \frac{1}{\lambda + x_i})\alpha & = \sum_{i=1}^n \frac{1}{\lambda + x_i}\\ (\sum_{i=1}^n (\frac{1}{\lambda} - \frac{1}{\lambda + x_i})) \alpha & = \sum_{i=1}^n \frac{1}{\lambda + x_i}\\ (\sum_{i=1}^{n}\frac{x_i}{\lambda(\lambda + x_i)}) \alpha & = \sum_{i=1}^{n} \frac{1}{\lambda + x_i} \\ \hat{\alpha} & = \frac{\sum_{i=1}^{n} \frac{1}{\lambda + x_i}}{(\sum_{i=1}^{n}\frac{x_i}{\lambda(\lambda + x_i)})} \end{align*}

Then, we can have the equation:

ni=1nlog(1+xiλ)i=1n1λ+xi(i=1nxiλ(λ+xi))=0 \frac{n}{\sum_{i=1}^n \log(1+ \frac{x_i}{\lambda})} -\frac{\sum_{i=1}^{n} \frac{1}{\lambda + x_i}}{(\sum_{i=1}^{n}\frac{x_i}{\lambda(\lambda + x_i)})} = 0

r
x <- rpareto(1000, shape = 2, scale = 1)

f <- function(lambda) {
  n / sum(log(1 + x / lambda)) - sum(1 / (lambda + x)) / sum(x / (lambda *
(lambda + x)))
}

lambda <- uniroot(f, c(1e-8, 1e8))$root

alpha <- length(x) / sum(log(1 + x / lambda))

paste0("alpha:", alpha)
paste0("lambda:", lambda)

Weibull distribution

Characteristics of the Weibull distribution

If a random variable XX follows a Weibull distribution, we denote it as

XWeibull(c,γ),X \sim \text{Weibull}(c, \gamma),

where cc and γ\gamma are the shape and scale parameters, respectively.

  • PDF:

    fX(x)=cγxγ1ecxγf_X(x) = c \gamma x^{\gamma - 1} e ^{-c x ^{\gamma}}

    Weibull distribution can be derived from the exponential distribution.

    Suppose Yexp(c)Y \sim exp(c), then X=Y1/γWeibull(c,γ)X = Y^{1/\gamma} \sim Weibull(c, \gamma)

    First, recall the change of the variable formula:

    fX(x)={fY(g1(x)), if x>00,otherwisef_X(x) = \{ \begin{align*} f_Y(g^{-1}(x)), & \ \text{if} \ x > 0 \\ 0 &, \text{otherwise} \end{align*}

    Then, recall the density function of the exponential distribution:

    fY(y)=cecy,fory>0f_Y(y) = ce^{-cy}, \quad \text{for} \quad y > 0

    Then, we have

    X=g(Y)=Y1/γX = g(Y) = Y^{1 / \gamma}

    The inverse function of G is given by

    Y=g1(x)=xγY = g^{-1}(x) = x^{\gamma}

    Therefore, the density function of X is given by:

    fX(x)=FY(g1(x))dg1dx=cecxγγxγ1=cγxγ1ecxγ\begin{align*} f_X(x) & = F_Y(g^{-1}(x)) | \frac{dg^{-1}}{dx} \\ & = ce^{-cx^{\gamma}}\gamma x^{\gamma -1} \\ & = c \gamma x^{\gamma -1} e^{-cx^{\gamma}} \end{align*}

  • CDF:

    FX(x)=P[Xx]=P[Y1/γx]=P[Yxγ]=1ecxγ F_X(x) = P[X\leq x] = P[Y^{1/\gamma} \leq x] = P[Y \leq x^{\gamma}] = 1 - e^{-cx^{\gamma}}

  • Survival function:

    FˉX(x)=P[X>x]=P[Y1/γ>x]=P[Y>xγ]=ecxγ\bar{F}_X(x) = P[X > x] = P[Y^{1/\gamma} > x] = P[Y > x^{\gamma}] = e^{-cx^{\gamma}}

Propositions of the Weibull distribution

  • Mean:

    E(X)=E(Y1/γ)=Γ(1+1/γ)c1/γ=Γ(1+1/γ)cγE(X) = E(Y^{1/\gamma}) = \frac{\Gamma(1 + 1/\gamma)}{c^{1/\gamma}} = \Gamma(1 + 1/\gamma) c^{\gamma}

    Recall the expectation of the exponential distribution:

    E(Yk)=k!ck=Γ(1+k)ckE(Y^{k}) = \frac{k!}{c^k} = \frac{\Gamma(1 + k)}{c^k}

    Then, extend to the kk-th origin moment:

    E(Xk)=E(Yk/γ)=Γ(1+k/γ)ck/γ=Γ(1+k/γ)ck/γE(X^k) = E(Y^{k/\gamma}) = \frac{\Gamma(1+k/\gamma)}{c^{k/\gamma}} = \Gamma(1 + k/\gamma) c^{-k/\gamma}

  • Variance:

    Var(X)=E(X2)E2(X)=Γ(1+2/γ)c2/γ(Γ(1+1/γ)c1/γ)2=Γ(1+2/γ)c2/γ(Γ(1+1/γ)2c2/γ)=Γ(1+2/γ)c2/γΓ2(1+1/γ)c2/γ=c2/γ(Γ(1+2/γ)Γ2(1+1/γ))\begin{align*} Var(X) & = E(X^2) - E^2(X)\\ & = \Gamma(1 + 2/\gamma) c^{-2/\gamma} - (\Gamma(1 + 1/\gamma) c^{-1/\gamma})^2 \\ & = \Gamma(1 + 2/\gamma) c^{-2/\gamma} - (\Gamma(1 + 1/\gamma)^2 c^{-2/\gamma}) \\ & = \Gamma(1 + 2/\gamma) c^{-2/\gamma} - \Gamma^2(1 + 1/\gamma) c^{-2/\gamma} \\ & = c^{-2/\gamma} (\Gamma(1 + 2/\gamma) - \Gamma^2(1 + 1/\gamma)) \end{align*}

Estimation of parameters

Method of moments (MM)

The first two moments of the Weibull distribution are:

μ1=E(X)=Γ(1+1/γ)cγμ2=Var(X)=c2/γ(Γ(1+2/γ)Γ2(1+1/γ))\begin{align*} \mu_1 & = E(X) = \Gamma(1 + 1/\gamma) c^{\gamma} \\ \mu_2 & = Var(X) = c^{-2/\gamma} (\Gamma(1 + 2/\gamma) - \Gamma^2(1 + 1/\gamma)) \end{align*}

Solve the first equation with taking logarithem:

log(μ1)=log(Γ(1+1/γ))+γlog(c)γ=log(μ1)log(Γ(1+1/γ))log(c)\begin{align*} \log(\mu_1) & = \log(\Gamma(1 + 1/\gamma)) + \gamma \log(c) \\ \rightarrow \gamma & = \frac{\log(\mu_1) - \log(\Gamma(1 + 1/\gamma))}{\log(c)} \end{align*}

Then, we can get the estimator of cc in the second equation:

log(μ2)=2γlog(c)+log(Γ(1+2/γ))log(Γ2(1+1/γ))2γlog(c)=log(Γ(1+2/γ))log(Γ2(1+1/γ))log(μ2)log(c)=log(Γ(1+2/γ))log(Γ2(1+1/γ))log(μ2)2/γc=exp(log(Γ(1+2/γ))log(Γ2(1+1/γ))log(μ2)2/γ)\begin{align*} \log(\mu_2) & = -\frac{2}{\gamma} \log(c) + \log(\Gamma(1 + 2/\gamma)) - \log(\Gamma^2(1 + 1/\gamma)) \\ \frac{2}{\gamma} \log(c) & = \log(\Gamma(1 + 2/\gamma)) - \log(\Gamma^2(1 + 1/\gamma)) - log(\mu_2) \\ \log(c) & = \frac{\log(\Gamma(1 + 2/\gamma)) - \log(\Gamma^2(1 + 1/\gamma)) - \log(\mu_2)}{2/\gamma} \\ c & = \exp\left(\frac{\log(\Gamma(1 + 2/\gamma)) - \log(\Gamma^2(1 + 1/\gamma)) - \log(\mu_2)}{2/\gamma}\right) \\ \end{align*}

Then, we replace c=exp(log(Γ(1+2/γ))log(Γ2(1+1/γ))log(μ2)2/γ)c = \exp\left(\frac{\log(\Gamma(1 + 2/\gamma)) - \log(\Gamma^2(1 + 1/\gamma)) - \log(\mu_2)}{2/\gamma}\right) in the first equation, we can get the estimator of γ\gamma.

γ=log(μ1)log(Γ(1+1/γ))log(exp(log(Γ(1+2/γ))log(Γ2(1+1/γ))log(μ2)2/γ))\gamma = \frac{\log(\mu_1) - \log(\Gamma(1 + 1/\gamma))}{\log\left(\exp\left(\frac{\log(\Gamma(1 + 2/\gamma)) - \log(\Gamma^2(1 + 1/\gamma)) - \log(\mu_2)}{2/\gamma}\right)\right)}

Next, we replace the first and second moments with the sample moments:

μ1=1ni=1nxi=Xˉμ2=Var(X)=i=1n(xixˉ)2n=S2\begin{align*} \mu_1 & = \frac{1}{n} \sum_{i=1}^n x_i = \bar{X} \\ \mu_2 & = Var(X) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n} = S^2 \end{align*}

Then, we can estimate the parameters γ\gamma and cc by the following equations:

γ^=log(Xˉ)log(Γ(1+1/γ^))log(exp(log(Γ(1+2/γ^))log(Γ2(1+1/γ^))log(S2)2/γ^))c^=exp(log(Γ(1+2/γ^))log(Γ2(1+1/γ^))log(S2)2/γ^)\begin{align*} \hat{\gamma} & = \frac{\log(\bar{X}) - \log(\Gamma(1 + 1/\hat{\gamma}))}{\log\left(\exp\left(\frac{\log(\Gamma(1 + 2/\hat{\gamma})) - \log(\Gamma^2(1 + 1/\hat{\gamma})) - \log(S^2)}{2/\hat{\gamma}}\right)\right)} \\ \hat{c} & = \exp\left(\frac{\log(\Gamma(1 + 2/\hat{\gamma})) - \log(\Gamma^2(1 + 1/\hat{\gamma})) - \log(S^2)}{2/\hat{\gamma}}\right) \end{align*}

Finally, we can solve the equation by R or Python.

r
# generate 1000 Weibull random variables
x <- rweibull(1000, shape = 2, scale = 1)

aux <- log(mean(x))

f <- function(gamma) {
  (log(mean(x)) - log(gamma(1 + 1 / gamma))) / log(exp((log(gamma(1 + 2 / gamma)) - log(gamma(1 + 1 / gamma))^2 - log(var(x))) / (2 / gamma))) - gamma
}

gamma <- uniroot(f, c(1e-8, 1e8))$root

c <- exp((log(gamma(1 + 2 / gamma)) - log(gamma(1 + 1 / gamma))^2 - log(var(x))) / (2 / gamma))

cat(
"Estimated shape parameter: ", gamma, "\n",
"Estimated scale parameter: ", c, "\n"
)

Maximum likelihood estimation (MLE)

The likelihood functon of Weibull distribution is given by:

L=i=1ncγxiy1ecxiγL = \prod_{i = 1}^{n} c \gamma x_i^{y-1} e^{-cx_i^{\gamma}}

The log-likelihood function will be:

l=i=1nlog(c)+i=1nlog(γ)+(γ1)i=1nci=1nxiγ=nlog(c)+nlog(γ)+(γ1)i=1nlog(x+i)ci=1nxiγ\begin{align*} l & = \sum_{i = 1}^n\log(c) +\sum_{i = 1}^n\log(\gamma) + (\gamma - 1) \sum_{i = 1}^n - c\sum_{i = 1}^n x_i^{\gamma} \\ & =n \log(c) + n \log(\gamma) + (\gamma - 1) \sum_{i = 1}^n \log(x+i) - c\sum_{i = 1}^n x_i^{\gamma} \end{align*}

Taking the derivative of the log-likelihood function with respect to cc and γ\gamma, we have the following equations:

dldc=nci=1nxiγ=0\frac{dl}{dc} = \frac{n}{c} - \sum_{i = 1}^n x_i^{\gamma} = 0

Solve the equation, we have the MLE of cc:

nc=i=1nxiγc^=ni=1nxiγ\frac{n}{c} = \sum_{i = 1}^n x_i^{\gamma} \Rightarrow \hat{c} = \frac{n}{\sum_{i = 1}^n x_i^{\gamma}}

Then, taking the derivative of the log-likelihood function with respect to γ\gamma,

dldγ=nγ+i=1nlog(xi)ci=1nxiγlog(xi)=0\frac{dl}{d\gamma} = \frac{n}{\gamma} + \sum_{i = 1}^n \log(x_i) - c\sum_{i = 1}^n x_i^{\gamma} \log(x_i) = 0

Replace cc with ni=1nxiγ\frac{n}{\sum_{i = 1}^n x_i^{\gamma}}, we can get the MLE of γ\gamma:

nγ+i=1nlog(xi)ni=1nxiγi=1nxiγlog(xi)=01γ+log(xi)1i=1nxiγi=1nxiγlog(xi)=0\begin{align*} \frac{n}{\gamma} + \sum_{i = 1}^n \log(x_i) - \frac{n}{\sum_{i = 1}^n x_i^{\gamma}}\sum_{i = 1}^n x_i^{\gamma} \log(x_i) & = 0 \\ \frac{1}{\gamma} + \overline{\log(x_i)} - \frac{1}{\sum_{i = 1}^n x_i^{\gamma}}\sum_{i = 1}^n x_i^{\gamma} \log(x_i) & = 0 \\ \end{align*}

This equation can be solved by R or Python.

r
# generate 1000 Weibull random variables
x <- rweibull(1000, shape = 2, scale = 1)

aux <- mean(log(x))

f <- function(gamma) {
1 / gamma + aux - sum(x^gamma * log(x)) / sum(x^gamma)
}

gamma <- uniroot(f, c(1e-8, 1e8))$root
c <- length(x) / sum(x^gamma)

cat(
"Estimated shape parameter: ", gamma, "\n",
"Estimated scale parameter: ", c, "\n"
)

Powered by VitePress