Skip to content

Loss distributions for modeling claim severity

In this part, we will focus on the following aspects to discuss the distributions:

  • Characteristics of loss distributions: we will explore the Moment Generating Function (MGF), probability density function (PDF), cumulative distribution function (CDF), survival function and etc.
  • Propositions of loss distributions: we will discuss the properties of the distributions, such as the mean, variance, skewness, and kurtosis.
  • Estimation of parameters: we will introduce the methods to estimate the parameters of the distributions, such as the method of moments (MM), maximum likelihood estimation (MLE), and etc.
  • Applications in insurance: we will discuss the applications of the distributions in insurance contexts, such as pricing insurance policies, setting reserves, and etc.

Note

More details will be added into Probability and Statistics section.

Preliminaries

Before we delve into the specific distributions, let's first introduce some basic concepts that are essential for understanding the subsequent discussions.

When you study the loss distributions, you should have already known that the modeling is based on the random variables and the probability. We use P(X)P(X) to denote the probability of the random variable XX.

Then we have the following definitions:

  • Probability density function (PDF): The probability density function (PDF) of a continuous random variable XX is a function f(x)f(x) that describes the likelihood of the variable taking on a particular value xx. The PDF is non-negative and integrates to 1 over the entire range of possible values of XX.

    f(x)=P(X=x)f(x) = P(X = x)

  • Cumulative distribution function (CDF): The cumulative distribution function (CDF) of a random variable XX is a function F(x)F(x) that describes the probability that the variable takes on a value less than or equal to xx.

    F(x)=P(Xx)F(x) = P(X \leq x)

  • Survival function: The survival function of a random variable XX is a function S(x)S(x) that describes the probability that the variable takes on a value greater than xx.

    Fˉ(x)=P(X>x)=1F(x)\bar{F}(x) = P(X > x) = 1 - F(x)

Exponential distribution

The exponential distribution is a continuous probability distribution that describes the time between events in a Poisson process, where events occur continuously and independently at a constant average rate. The exponential distribution is characterised by a single parameter λ\lambda, which represents the rate at which events occur.

Characteristics of the exponential distribution

If a random variable XX is exponential distributed with rate parameter λ\lambda, we write XExp(λ)X \sim \text{Exp}(\lambda).

  • PDF:

    f(x)=λeλx,x0f(x) = \lambda e^{-\lambda x}, \quad x \geq 0

  • CDF:

    F(x)=1eλx,x0F(x) = 1 - e^{-\lambda x}, \quad x \geq 0

  • Survival function:

    Fˉ(x)=eλx,x0\bar{F}(x) = e^{-\lambda x}, \quad x \geq 0

Propositions of the exponential distribution

The exponential distribution has the following properties:

  • MGF(Moment Generating Function):

    MX(t)=E(etX)=λλt,t<λM_X(t) = E(e^{tX}) = \frac{\lambda}{\lambda - t}, \quad t < \lambda

  • CGF (Cumulant Generating Function):

    CX(t)=logMX(t)=log(λλt)C_X(t) = \log M_X(t) = \log \left( \frac{\lambda}{\lambda - t} \right)

  • Mean: The mean can be generated from the MGF:

    E(X)=m1=MX(0)=ddt(λλt)t=0=1λE(X) = m_1 = M_X'(0) = \frac{d}{dt} \left( \frac{\lambda}{\lambda - t} \right) \bigg|_{t=0} = \frac{1}{\lambda}

  • Variance:

    Var(X)=m2=MX(0)m12=2λ21λ2=1λ2\text{Var}(X) = m_2 = M_X''(0) - m_1^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}

    or we can use CGF to calculate the variance:

    Var(X)=CX(0)=d2dt2log(λλt)t=0=2λ2\text{Var}(X) = C_X''(0) = \frac{d^2}{dt^2} \log \left( \frac{\lambda}{\lambda - t} \right) \bigg|_{t=0} = \frac{2}{\lambda^2}

  • Skewness: According to the definition of CDF, we can calculate the skewness:

    Skew(X)=m3m23/2=CX(0)Var3/2(X)=2/λ3(1/λ2)3/2=2\text{Skew}(X) = \frac{m_3}{m_2^{3/2}} = \frac{C'''_X(0)}{Var^{3/2}(X)} = \frac{2/\lambda^3}{(1/\lambda^2)^{3/2}} = 2

Estimation of parameters

Method of moments (MM)

From the above propositions, we can see that the first moment of the exponential distribution is 1λ\frac{1}{\lambda}. We only have one parameter to estimate, so we can use the method of moments to estimate the parameter λ\lambda. It can be solved by the following criteria, the first origin moment is equal to the first sample moment:

E(X)=1λ=1ni=1nXi=XˉE(X) = \frac{1}{\lambda} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}

Then we can get the estimator of λ\lambda:

λ^=1Xˉ\hat{\lambda} = \frac{1}{\bar{X}}

Maximum likelihood estimation (MLE)

The likelihood function of the exponential distribution is:

L(λ)=i=1nλeλxi=λneλi=1nxiL(\lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^n x_i}

Then the log-likelihood function is:

logL(λ)=nlogλλi=1nxi\log L(\lambda) = n \log \lambda - \lambda \sum_{i=1}^n x_i

To find the MLE of λ\lambda, we need to solve the following equation:

ddλlogL(λ)=nλi=1nxi=0\frac{d}{d\lambda} \log L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^n x_i = 0

Then we can get the MLE of λ\lambda:

λ^=ni=1nxi=1Xˉ\hat{\lambda} = \frac{n}{\sum_{i=1}^n x_i} = \frac{1}{\bar{X}}

Gamma distribution

The gamma distribution is a continuous probability distribution that generalises the exponential distribution. It is characterized by two parameters: a shape parameter α\alpha and a rate parameter β\beta (or λ\lambda). The exponential distribution is a special case of the gamma distribution when α=1\alpha = 1.

Characteristics of the gamma distribution

If a random variable XX is gamma distributed with shape parameter α\alpha and rate parameter λ\lambda, we write XGamma(α,λ)X \sim \text{Gamma}(\alpha, \lambda) or XΓ(α,λ)X \sim \Gamma(\alpha, \lambda).

  • PDF:

    f(x)=λαΓ(α)xα1eλx,x0f(x) = \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \geq 0

    where Γ(α)\Gamma(\alpha) is the gamma function defined as Γ(α)=0xα1exdx\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx.

  • CDF:

    F(x)=1Γ(α)γ(α,λx),x0F(x) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \lambda x), \quad x \geq 0

  • Survival function:

    Fˉ(x)=1F(x)=11Γ(α)γ(α,λx),x0\bar{F}(x) = 1 - F(x) = 1 - \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \lambda x), \quad x \geq 0

    where γ(α,λx)\gamma(\alpha, \lambda x) is the lower incomplete gamma function defined as γ(α,λx)=0xtα1eλtdt\gamma(\alpha, \lambda x) = \int_0^{x} t^{\alpha - 1} e^{-\lambda t} dt.

Propositions of the gamma distribution

The gamma distribution has the following properties:

  • MGF:

    MX(t)=E(etX)=(λλt)α,t<λM_X(t) = E(e^{tX}) = \left( \frac{\lambda}{\lambda - t} \right)^\alpha, \quad t < \lambda

  • CGF:

    CX(t)=logMX(t)=αlog(λλt)C_X(t) = \log M_X(t) = \alpha \log \left( \frac{\lambda}{\lambda - t} \right)

  • Mean: The mean can be generated from the MGF:

    E(X)=m1=MX(0)=ddt((λλt)α)t=0=αλE(X) = m_1 = M_X'(0) = \frac{d}{dt} \left( \left( \frac{\lambda}{\lambda - t} \right)^\alpha \right) \bigg|_{t=0} = \frac{\alpha}{\lambda}

  • Variance:

    Var(X)=m2=MX(0)m12=αλ2\text{Var}(X) = m_2 = M_X''(0) - m_1^2 = \frac{\alpha}{\lambda^2}

  • Skewness:

    Skew(X)=m3m23/2=CX(0)Var3/2(X)=2α\text{Skew}(X) = \frac{m_3}{m_2^{3/2}} = \frac{C'''_X(0)}{Var^{3/2}(X)} = \frac{2}{\sqrt{\alpha}}

Estimation of parameters

Method of moments (MM)

In the gamma distribution, we have two parameters to estimate, so we need to use the method of moments to estimate the parameters α\alpha and λ\lambda. The first moment of the gamma distribution is αλ\frac{\alpha}{\lambda}, and the second moment is αλ2\frac{\alpha}{\lambda^2}. Both of them should be equal to the sample moments.

We can solve the following criteria:

E(X)=αλ=1ni=1nXi=XˉE(X) = \frac{\alpha}{\lambda} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}

Var(X)=αλ2=1ni=1n(XiXˉ)2=S2Var(X) = \frac{\alpha}{\lambda^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = S^2

Solve the first moment,

λ^=αXˉ\hat{\lambda} = \frac{\alpha}{\bar{X}}

Then, replace λ\lambda with αXˉ\frac{\alpha}{\bar{X}} in the second moment, we can get the estimator of α\alpha:

α^=Xˉ2S2\hat{\alpha} = \frac{\bar{X}^2}{S^2}

and the estimator of λ\lambda:

λ^=α^Xˉ=Xˉ2/S2Xˉ=XˉS2\hat{\lambda} = \frac{\hat{\alpha}}{\bar{X}} = \frac{\bar{X}^2 / S^2}{\bar{X}} = \frac{\bar{X}}{S^2}

The method of moments estimators for α\alpha and λ\lambda are:

α^=Xˉ2S2,λ^=XˉS2\hat{\alpha} = \frac{\bar{X}^2}{S^2}, \quad \hat{\lambda} = \frac{\bar{X}}{S^2}

Maximum likelihood estimation (MLE)

The likelihood function of the gamma distribution is:

L(α,λ)=i=1nλαΓ(α)xiα1eλxiL(\alpha, \lambda) = \prod_{i=1}^n \frac{\lambda^\alpha}{\Gamma(\alpha)} x_i^{\alpha - 1} e^{-\lambda x_i}

Then the log-likelihood function is given by:

l=i=1n(αlog(λ)log(Γ(α))+(α1)log(xi)λxi)=nαlog(λ)nlog(Γ(α))+(α1)i=1nlog(xi)λi=1nxi\begin{array}{rl} l & = \sum_{i=1}^n \left( \alpha \log(\lambda) - \log(\Gamma(\alpha)) + (\alpha - 1) \log(x_i) - \lambda x_i \right) \\ \\ & = n \alpha \log(\lambda) - n \log(\Gamma(\alpha)) + (\alpha - 1) \sum_{i=1}^n \log(x_i) - \lambda \sum_{i=1}^n x_i \end{array}

Taking the derivative of the log-likelihood function with respect to α\alpha and λ\lambda,

we have the following equations:

dldλ=nαλi=1nxi=0\frac{dl}{d\lambda} = \frac{n\alpha}{\lambda} - \sum_{i=1}^n x_i = 0

Solve the equation, we have the MLE of λ\lambda:

λ^=nαi=1nxi=αXˉ\hat{\lambda} = \frac{n\alpha}{\sum_{i=1}^n x_i} = \frac{\alpha}{\bar{X}}

Then, taking the derivative of the log-likelihood function with respect to α\alpha,

dldα=nlog(λ)nΓ(α)Γ(α)+i=1nlog(xi)=0=n(log(λ)ψ(α)+i=1nlog(xi)n)=0\begin{array}{rl} \frac{dl}{d\alpha} & = n \log(\lambda) - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \sum_{i=1}^n \log(x_i) = 0 \\ \\ & = n(\log(\lambda) - \psi(\alpha) + \frac{\sum_{i=1}^n \log(x_i)}{n}) = 0 \end{array}

where ψ(α)=Γ(α)Γ(α)\psi(\alpha) = \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} is the digamma function.

Replace λ\lambda with αXˉ\frac{\alpha}{\bar{X}}, we can get the MLE of α\alpha:

log(α^)log(Xˉ)ψ(α^)+i=1nlog(xi)n=0log(\hat{\alpha}) - log(\bar{X}) - \psi(\hat{\alpha}) + \frac{\sum_{i=1}^n \log(x_i)}{n} = 0

This equatio can be solved by R or Python.

r
x <- rgamma(1000, shape = 5, rate = 0.5) # nolint R
aux <- log(mean(x)) - mean(log(x)) # nolint: assignment_linter.
f <- function(z) {
log(z) - digamma(z) - aux
}
alpha <- uniroot(f, c(1e-8, 1e8))$root
lambda <- alpha / mean(x)

Lognormal distribution

The lognormal distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. It is characterised by two parameters: the mean μ\mu and the standard deviation σ\sigma of the logarithm of the variable.

Characteristics of the lognormal distribution

If a random variable XX is lognormally distributed with parameters μ\mu and σ\sigma, we write XLognormal(μ,σ)X \sim \text{Lognormal}(\mu, \sigma) or Y=logXN(μ,σ2)Y = logX \sim \text{N}(\mu, \sigma^2).

  • PDF: Letting X=eYX = e^Y, we can derive the PDF of the lognormal distribution:

    f(x)=1x[12πσe(log(x)μ)22σ2],x>0f(x) = \frac{1}{x} \left[\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\log(x) - \mu)^2}{2\sigma^2}}\right], \quad x > 0

  • CDF:

    F(x)=12+12erf(log(x)μ2σ)F(x) = \frac{1}{2} + \frac{1}{2} \text{erf}\left(\frac{\log(x) - \mu}{\sqrt{2}\sigma}\right)

Note

CDF of the lognormal distribution will not be used normally in the actuarial practice.

  • Survival function:

    Fˉ(x)=1F(x)=1212erf(log(x)μ2σ)\bar{F}(x) = 1 - F(x) = \frac{1}{2} - \frac{1}{2} \text{erf}\left(\frac{\log(x) - \mu}{\sqrt{2}\sigma}\right)

Propositions of the lognormal distribution

The lognormal distribution has the following properties:

  • MGF: The lognormal distribution does not have a closed-form MGF.

  • Mean:

    According to the relationship between XX and eYe^Y, we can derive the mean for lognormal distribution by:

    E(X)=E(eY)=MY(1)=eμ+σ22E(X) = E(e^Y) = M_Y(1) = e^{\mu + \frac{\sigma^2}{2}}

  • Variance: Similar to the mean, we can derive the variance for lognormal distribution by:

    Var(X)=E(X2)E2(X)=E(e2Y)E2(eY)=MY(2)MY2(1)=e2μ+2σ2e2μ+σ2=e2μ+σ2(eσ21)\begin{array}{rl} Var(X) & = E(X^2) - E^2(X) = E(e^{2Y}) - E^2(e^Y) \\ \\ & = M_Y(2) - M_Y^2(1) = e^{2\mu + 2\sigma^2} - e^{2\mu + \sigma^2} \\ \\ & = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1) \end{array}

    where MY(t)M_Y(t) is the MGF of the normal distribution YN(μ,σ2)Y \sim N(\mu, \sigma^2).

  • Skewness: The skewness of lognormal distribution should be derived by the standard formula:

Estimation of parameters

The lognormal distributions are similar to the normal distribution that they have two parameters μ\mu and σ2\sigma^2.

Method of moments (MM)

like the previous estimation, we can have the following first tww origin moments from the above propositions:

μ1=E(X)=exp(μ+σ22)μ2=E(X2)=E(e2Y)=exp(2μ+2σ2)\begin{array}{l} \mu_1 = E(X) = exp(\mu + \frac{\sigma^2}{2}) \\ \\ \mu_2 = E(X^2) = E(e^{2Y}) = exp(2\mu + 2\sigma^2) \end{array}

Solve the first equation with taking logarithem:

log(μ1)=μ+σ22μ=log(μ1)σ22log(\mu_1) = \mu + \frac{\sigma^2}{2} \rightarrow \mu = log(\mu_1) - \frac{\sigma^2}{2}

Then, replace μ\mu with log(μ1)σ22log(\mu_1) - \frac{\sigma^2}{2} in the second equation, we can get the estimator of σ2\sigma^2:

log(μ2)=2μ+2σ2log(μ2)=2(log(μ1)σ22)+2σ2=2log(μ1)+σ2log(\mu_2) = 2\mu + 2\sigma^2 \rightarrow log(\mu_2) = 2\left(log(\mu_1) - \frac{\sigma^2}{2}\right) + 2\sigma^2 = 2log(\mu_1) + \sigma^2

σ=log(μ2)2log(μ1)\sigma = log(\mu_2) - 2log(\mu_1)

Then we use the sample moments to estimate the parameters μ\mu and σ2\sigma^2.

μ^1=i=1nXinμ^2=i=1nXi2n\begin{array}{l} \hat{\mu}_1 = \frac{\sum_{i=1}^n X_i}{n} \\ \\ \hat{\mu}_2 = \frac{\sum_{i=1}^n X_i^2}{n} \end{array}

Replace the above estimators into the equations, we can get the estimators of μ\mu and σ2\sigma^2:

σ^2=log(μ^2)2log(μ^1)\hat{\sigma}^2 = log(\hat{\mu}_2) - 2log(\hat{\mu}_1)

μ^=log(μ^1)σ^22=log(i=1nXin)log(i=1nXi2n)2log(i=1nXin)2=log(i=1nXin)log(i=1nXi2)2+log(i=1nXin)=2log(i=1nXin)log(i=1nXi2)2\begin{array}{rl} \hat{\mu} & = log(\hat{\mu}_1) - \frac{\hat{\sigma}^2}{2} \\ \\ & = log\left(\frac{\sum_{i=1}^n X_i}{n}\right) - \frac{log\left(\frac{\sum_{i=1}^n X_i^2}{n}\right) - 2log\left(\frac{\sum_{i=1}^n X_i}{n}\right)}{2} \\ \\ & = log\left(\frac{\sum_{i=1}^n X_i}{n}\right) - \frac{log\left(\sum_{i=1}^n X_i^2\right)}{2} + log\left(\frac{\sum_{i=1}^n X_i}{n}\right) \\ \\ & = 2log\left(\frac{\sum_{i=1}^n X_i}{n}\right) - \frac{log\left(\sum_{i=1}^n X_i^2\right)}{2} \end{array}

Maximum likelihood estimation (MLE)

The likelihood function of the lognormal distribution is:

L(μ,σ)=i=1n1xi[12πσe(log(xi)μ)22σ2]=i=1n((2πσ2)12xi1exp((log(xi)μ)22σ2))\begin{array}{rl} L(\mu, \sigma) & = \prod_{i=1}^n \frac{1}{x_i} \left[\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\log(x_i) - \mu)^2}{2\sigma^2}}\right] \\ \\ & = \prod_{i=1}^n \left((2\pi \sigma^2)^{-\frac{1}{2}} x_i^{-1} \text{exp}(-\frac{(log(x_i) - \mu)^2}{2\sigma^2}) \right) \end{array}

Then the log-likelihood function is:

l=i=1n(12log(2π)12log(σ2)log(xi)(log(xi)μ)22σ2)=n2log(2π)n2log(σ2)i=1nlog(xi)i=1n(log(xi)μ)22σ2=n2log(2π)n2log(σ2)i=1nlog(xi)i=1n(log(xi)22μlog(xi)+μ2)2σ2=n2log(2π)n2log(σ2)i=1nlog(xi)i=1nlog(xi)22σ2+μi=1nlog(xi)σ2nμ22σ2\begin{array}{rl} l &= \sum_{i=1}^{n} \left(-\frac{1}{2} \log(2 \pi) - \frac{1}{2} \log(\sigma^2) - \log(x_i) - \frac{(\log(x_i) - \mu)^2}{2 \sigma^2}\right) \\ \\ &= -\frac{n}{2} \log(2 \pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^n \log(x_i) - \sum_{i=1}^n \frac{(\log(x_i) - \mu)^2}{2 \sigma^2} \\ \\ &= -\frac{n}{2} \log(2 \pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^n \log(x_i) - \sum_{i=1}^n \frac{(\log(x_i)^2 - 2 \mu \log(x_i) + \mu^2)}{2 \sigma^2} \\ \\ &= -\frac{n}{2} \log(2 \pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^n \log(x_i) - \frac{\sum_{i=1}^n \log(x_i)^2}{2 \sigma^2} + \frac{\mu \sum_{i=1}^n \log(x_i)}{\sigma^2} - \frac{n \mu^2}{2 \sigma^2} \end{array}

Taking the derivative of the log-likelihood function with respect to μ\mu and σ2\sigma^2, we have:

dldμ=i=1nlog(xi)σ22nμ2σ2=0i=1nlog(xi)σ2=nμσ2nμ=i=1nlog(xi)μ^=i=1nlog(xi)n=log(xi)\begin{align*} \frac{dl}{d\mu} &= \frac{\sum_{i=1}^n \log(x_i)}{\sigma^2} - \frac{2n\mu}{2\sigma^2} = 0 \\ \\ &\Rightarrow \frac{\sum_{i=1}^n \log(x_i)}{\sigma^2} = \frac{n\mu}{\sigma^2} \\ \\ &\Rightarrow n\mu = \sum_{i=1}^n \log(x_i) \\ \\ &\Rightarrow \hat{\mu} = \frac{\sum_{i=1}^n \log(x_i)}{n} = \overline{\log(x_i)} \end{align*}

Then, solve for σ2\sigma^2, we have

dldσ2=n2σ2i=1n(log(xi)μ)22(σ2)2=0n2σ2=i=1n(log(xi)μ)22σ4nσ2=i=1n(log(xi)μ)2σ^2=i=1n(log(xi)μ^)2nσ^=i=1n(log(xi)log(xi))2n\begin{align*} \frac{dl}{d\sigma^2} &= -\frac{n}{2\sigma^2} - \sum_{i=1}^n \frac{(\log(x_i) - \mu)^2}{2} (-\sigma^2)^{-2} = 0 \\ &\Rightarrow \frac{n}{2\sigma^2} = \frac{\sum_{i=1}^n (\log(x_i) - \mu)^2}{2\sigma^4} \\ &\Rightarrow n\sigma^2 = \sum_{i=1}^n (\log(x_i) - \mu)^2 \\ &\Rightarrow \hat{\sigma}^2 = \frac{\sum_{i=1}^n (\log(x_i) - \hat{\mu})^2}{n} \\ &\Rightarrow \hat{\sigma} = \sqrt{\frac{\sum_{i=1}^n (\log(x_i) - \overline{\log(x_i)})^2}{n}} \end{align*}

The MLE of μ\mu and σ\sigma are:

μ^=log(xi),σ^=i=1n(log(xi)log(xi))2n\hat{\mu} = \overline{\log(x_i)}, \quad \hat{\sigma} = \sqrt{\frac{\sum_{i=1}^n (\log(x_i) - \overline{\log(x_i)})^2}{n}}

Conclusion

In this part, we have discussed the loss distributions that are commonly used in actuarial practice, including the exponential distribution, gamma distribution and lognormal distribution. We have explored the characteristics of these distributions, their key properties, and the methods for estimating their parameters. These distributions are essential for modeling claim severity in insurance contexts and are widely used for pricing insurance policies, setting reserves, and assessing risk.

Powered by VitePress